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in purity 

Abstract 

Because of baseline fluctuation in an instrumental analysis, a purity test can overlook an illegitimate drug which 
contains an undesirable substance in more amount than a prescribed reference value. This paper proposes a 
probability theory to predict the lowest (average) signal, E[ Y2], of the substance which can be discriminated from the 
(average) reference signal, E[Y~], with a high probability (here, 95%) in liquid chromatography (LC). The difference 
between the lowest signal and reference signal, E[Y2] - E[YI] ( > 0), is referred to here as a discrimination limit. The 
repetition of experiments to estimate the standard deviation of measurements is unnecessary for the probability 
theory, but a mathematical treatment of instrumental baselines (Fourier transform, etc.) is essential. The Monte Carlo 
simulation is carried out in which the reference signal and predicted signal for the discrimination limit are overlaid 
randomly 5000 times on real LC baselines. The result is satisfactory: the observed probability for the right answer is 
94.3 or 94.8%; the theoretical one is 95%. The normality of the measurement distribution is examined for LC and 
capillary electrophoresis to verify the fundamental assumption of the proposed theory. © 1997 Elsevier Science B.V. 

Keywords: Uncertainty; Discrimination limit; Purity test; Pharmacopoeia; Chromatography; Capillary electrophoresis; 
Limit of detection; Probability theory; Statistics 

I. Introduction 

As stated by Thompson [1], the uncertainty of  
measurement is of  great importance in an analyti- 
cal community and should be made explicit as 
a universal practice. This paper  focuses on the 
uncertainty and restricted precision, called the 
discrimination limit, of  purity tests in pharmaco- 
poeias [2,3]. The indeterminate error of  instru- 
mental analyses is the only concern of  this paper 

* Corresponding author. 

and the other errors such as those associated with 
sampling and calibration are not considered. 

As an example, hydrocortisone sodium phos- 
phate decomposes into hydrocortisone and 
sodium phosphate and the Pharmacopoeia  of  
Japan allows the decomposition product to be 
present up to one hundredth of  the original drug 
content in weight. The purity test for the drug in 
liquid chromatography is stipulated as follows: 
the hydrocortisone peak, Y2, for the sample solu- 
tion of the drug is not larger than the peak, Yl for 
the standard solution of  hydrocortisone [2]. 

0731-7085/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved. 
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We consider the performance of the purity test 
to signal rejection for an illegitimate drug such as 
hydrocortisone in hydrocortisone sodium phos- 
phate, from the statistical viewpoint. The instru- 
mental measurement (e.g. peak area) is inevitably 
disturbed by the baseline noise, which blurs the 
true value. Nevertheless, if the decomposition 
product in the sample is present in much larger 
amount than in the reference standard, the peak 
area, Y2, for the sample solution will be observed 
to be larger than the area, Y,, for the reference 
standard. In this situation, the right answer (Y2 > 
Y~) will result with almost 100% probability. 
When the reference and sample contain equal 
amounts of the decomposition product, then the 
opposite conclusions (112 > Y~ and Y, < YI) will 
be drawn with the same probability ( =  50%). 
Therefore, there must exist a limiting amount (e.g. 
concentration), C2, for the sample which is 
slightly larger than the reference amount, C~, and 
which leads to a sufficiently high probability (say 
95%) for the right answer. 

If the contaminant concentration falls above 
the limiting concentration, C2, the purity test can 
find the irregularity with the probability of more 
than 95%. In other words, the risk for the purity 
test to overlook the irregularity is at most only 
5%. However, the loophole of the test exists be- 
tween the standard and limiting concentrations. 

The discrimination limit is defined as the mini- 
mum increase in analyte amount which can be 
discriminated, with a high possibility, from the 
original amount [4,5]. The discrimination limit of 
the purity test can be regarded as the difference 
between the limiting concentration and reference 
concentration: C 2 - Cj or similarly E[ 112] - E[ Y1] 
where E[Yi] denotes the mean of the observed 
value, Yi. The discrimination limit is subject to 
many factors such as the concentration of the 
standard and the stochastic properties of an ana- 
lytical apparatus used. In general, the smaller the 
discrimination limit, the more precise the test, as 
long as the same probability for the right judg- 
ment is referred to (here, 95%). 

The aim of this paper is to provide a probabil- 
ity theory for determining the discrimination limit 
of the purity tests in separation science. A proba- 
bility theory of quantitative analyses recently pro- 

posed by Hayashi and Matsuda is employed for 
predicting the uncertainty of measurement, i.e. 
standard deviation (S.D.) or relative standard de- 
viation (R.S.D.) of Y1 and Y2 [6-10]. The rest of 
this section describes the reasons why this study 
does not rely on the widespread statistical method 
and why the above probability theory is selected 
from many candidates. 

Fig. 1 illustrates a model for the discrimination 
limit. The S.D., 02, of the sample measurements is 
larger than that of the reference, because experi- 
ments have proved that the S.D. of measurements 
increases with increasing analyte amount in many 
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Fig. 1. Distr ibut ions of  responses (upper) and distr ibut ion of  
their difference (lower). For clear presentation, the risk of the 
wrong answer ( I I 2 -  Y~ < 0) is set at ca. 1% in the figure. The 
observed quantities, Y~ and Y2, for the reference and sample in 
an instrumental analysis are described as the independent 
Gaussian random variables characterized by the means, E[Yd 
and E[Y2], and the standard deviations (S.D.), 0.~ and 0.2, 
respectively. 0.1 - I l and 0- 2 = 13. 
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instrumental analyses [1,11]. The lower figure of 
Fig. 1 also shows the distribution of the observed 
difference, Y2-  II1, so that the right answer 
(112- Y~ > 0) is obtained with a probability. 

Given two sample solutions yielding the aver- 
age measurements, E[Y d and E[Y2] (Problem A), 
we can easily calculate the probability of the right 
answer ( Y 2 - Y l  > 0) by acquiring the measure- 
ment statistics for the solutions, a~ and a2: the 
S.D., a, of the difference, Y 2 -  YI, is known to be 
(a 2 + a~) ~'2. A more attractive and practical prob- 
lem is to assess the discrimination limit from the 
reference standard only with a given probability 
of the right answer (Problem B). For  this purpose, 
it is imperative to express the uncertainty of mea- 
surement, a2 (and a~) as a function of concentra- 
tion. This paper highlights Problem B. We assume 
sufficient accuracy with which the 'true' signals 
can be estimated experimentally as E[Y d and 
E[Y2], because statistics tells that the averages 
converge even more rapidly to the true values 
than S.D. 

If the measurement uncertainty, a~ or a2, can 
be known over a wide concentration range, it is 
easy to solve the above problems, A and B (see 
below). In practice, however, the most serious 
difficulty is to estimate the uncertainty, a~ or a2, 
with accuracy but as little effort as possible. Re- 
ferring to the Z 2 distribution with n - 1 degrees of 
freedom, we can know that 95% of the root- 
mean-square estimates of S.D. from 50 measure- 
ments scatter between 80 to 120% of the true 
value. This degree of variability between the indi- 
vidual S.D. values will be tolerable in the above 
problems, but the 50 experiments are unfavorable 
for slow instrumental analyses. For  five measure- 
ments, 95% of the statistical S.D. values spread 
widely between 35 to 167% of the true value. It is 
almost impossible to obtain an exact answer to 
the above problems from the S.D. values based on 
a small number of measurements. The probability 
theory used in this paper can provide reliable S.D. 
values: the corresponding scattering is 78-122% 
from a single baseline of 2048 data points [12,13]. 
This prediction ambiguity can be reduced by ana- 
lyzing more baselines, and the repetition of mea- 
surement can be dispensed with [12,13]. 

The theoretical or empirical prediction of the 
measurement R.S.D. has been studied extensively, 
for LC, [6-8,14-19], capillary electrophoresis 
(CE), [20] and spectroscopy [10,21-24]. Any pre- 
diction method for the response uncertainty can- 
not be perfect and contains some error in it, but 
there have been few publications specifying not 
only a theoretical framework but also the predic- 
tion error except for the probability theoretic 
studies [12,13]. It is important to compare the 
statistical and probabili ty-theoretic approaches 
according to the uncertainty accompanied with 
the same purpose. 

2. Theory 

2. I. General consideration 

This subsection derives the equation to give an 
answer to Problem B. Throughout  this paper, the 
discrimination limit, A Y, is assumed to be posi- 
tive. The negative discrimination limit represents 
the risk of the test to label an allowable drug as 
illicit. 

If the difference between the average measure- 
ments, A Y( = E[ Y2] - E[ YI]), is much larger than 
the standard deviation ( A Y > > ~  + a2), the dis- 
crimination between YI and II2 is considered per- 
fect. That is, the observed difference, Y z - Y ~ ,  
would almost always be positive. If  k ~  + a 2 = 
A Y ( k =  1.6), YI and Y2 can satisfactorily be 
discriminated with 5% risk for the wrong answer 
( Y 2 -  Y1 < 0). 

If the response S.D. varies only slightly with the 
response intensity, then a 2 can be approximated 
as a2 = a + (da/dY) AY where al and Y1 are de- 
scribed as a and Y for the general purpose. The 
condition of the discrimination limit that 

/ ,  k~  aT + a~ = AY can be described: 

k a 2 +  a + d y  

Squaring the above equation and solving the 
quadratic equation for A Y, we can obtain (see 
Appendix): 
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If k(do- /d Y) << 1, Eq. (2) can be simplified: 

do- 
A Y = x/2ko- + k2o- d ~  (3) 

This is the general equation of the discrimination 
limit of the purity test. Throughout this paper, 
k = 1.6 and the probability for the right answer is 
95%. The above assumption that k(do- /d Y) << l is 
discussed below. 

If the measurement error is homoscedastic (do-/ 
d Y = 0), Eq. (3) takes the simplest form: 

A Y = x/2ko- (4) 

This equation is quite similar to ones that appear 
in the literature concerning limit of detection 
[7,21,25,26]. It can be directly derived from the 
assumption that k ~ + o - ~ = A Y  where o-1 = 

0"2 ~ O.. 

If A Y > 0, the denominator in the right side of 
Eq. (2) should be positive and we can get the limit, 
called discriminability limit here, above which two 
samples cannot be discriminated: 

da 1 
d Y < k (5) 

This inequality demonstrates that two samples 
cannot be distinguished experimentally, if the in- 
crease ratio of the instrumental error, do-, to the 
analyte signal intensity, d K exceeds the discrim- 
inability limit, l/k. That is, too much increase in the 
measurement uncertainty disturbs the discrim- 
inability. 

2.2. Examples of response uncertainty 
(scedasticity ) 

This subsection gives a brief review of the prob- 
ability theory to describe the response R.S.D., as 
a function of the mean signal intensity, E[Y] 
( =  E[Y,]), in separation science. The detailed ex- 
planations and experimental verification of the 
theory were given elsewhere [6- 8,10,13,20]. 

The 'false area' created by the baseline drifts is 
the major cause of  the measurement uncertainty in 
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instrumental analysis, if the sample concentration 
is sufficiently low. The R.S.D. of measurements can 
be described as [8]: 

o.2/E [ y]2 _ (k,-- k~)ff '2 (first term) 
E [ W  

1 + - -  
(1 - p )  

(k  r - k ~ -  2p 1 _l_~p kr- ~-~ + P :  1 -21_p  2p2(kt- k~))j 

/~ /2  

- -  (second term) 
E[W 
+ p 2  I _ - p 2 ~ / .  1 _ P__k" k~)2 ,h2 

(third term) 1 - p2 \ -1 - -p  

+ E ~  (fourth term) 

~o~2 1 - p2a.~ + 
1 p2 

[ 1 -  pk' - k~ pk..+k,._ , 1 - - p  2kc 

1 - p  2 

+ . 1 -  pke k~ 
,=, 

rh 2 
E[ y]2 (fifth term) 

( k r -  kc) 2 ~,~2 
+ - -  - -  (sixth term) [27] 

b E[Y] 2 

+ 12 (seventh term) (6) 

where if, is the S.D. of the white noise, rh and p are 
the S.D. and auto-correlation parameter of the 
Markov process, respectively, kc is called cutoff 
point of the signal integration, k,. is filter-off point, 
b denotes the number of consecutive data points 
over which the baseline noise is averaged for the 
zero level, I is the injection volume error (R.S.D.), 
and c~ is described in [8]. The integration is carried 
out over the domain from kc + 1 to k r (for the peak 
height measurement, k~ + 1 = kr). The zero level at 
the zero point is calculated based on the effect of 
the white noise only, because the white noise can 
affect the precision more seriously than the Markov 
process [27]. 

The terms of  Eq. (6) denote the following stochas- 
tic contributions to the response uncertainty [8]: 
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first term, the error from the white noise in the 
integration domain ( k f - k c  data points); 

second term, the error from the Markov pro- 
cess in the integration domain; 

third term, the influence of the lag time during 
kc data points (if k c = 0, this term is zero); 

fourth term, the effect of the white noise on the 
oblique integration; 

fifth term, the effect of the Markov process on 
the oblique integration; 

sixth term, the error in determining the zero 
level at the zero point; 

seventh term, the independent error (mainly 
originating from the injection error). 

Noise parameters, ~r', rh and p, are all deter- 
mined by the least-squares fitting of the theoreti- 
cal power spectrum of the model process to the 
actual power spectrum of a baseline [6]. The 
theoretical power spectrum of the model (white 
noise + Markov process) is given in Eq. (AS) of 
[6]. Fig. 2 shows the power spectra (1, 2 . . . . .  n) 
of the LC baselines of 512 data points. Although 
the noise parameters can be estimated from each 
spectrum, the R.S.D. of the response S.D., aM, 
predicted from a single spectrum is relatively large 
( =  18.9°/,0 [12]. In this paper, the average power 
spectrum (n = 8) is fitted by the simplex least 
squares for the exact prediction of the discrimina- 
tion limit instead of averaging the noise parame- 
ters obtained from the individual power spectra. 
This is because the most critical step of the exact 
parametrization seems to be the simplex least 
squares. The average signal intensity, E[ Y], can be 
estimated from a concentrated sample. If the in- 
jection error, I, is estimated by separate experi- 
ments, we can calculate the response S.D., aM, or 
R.S.D., aM/E[Y], by Eq. (6). Note that the signal 
parameters, kc and k~,, have to comply with the 
integration mode [6]. 

For the area measurement, the zero line over 
which the intensities are integrated is drawn along 
the observed baseline, called the oblique integra- 
tion [8]. In this paper, the zero point which is the 
starting point of the zero line is adjacent to the 
left edge of the integration domain ( _+ 3 s) (no lag 
time). The height measurement is the difference 
between the observed intensities at the peak center 
and the zero point (not the highest intensity over 

the domain ( +_ 3 s)). The zero line is drawn in the 
same way as that for the oblique integration. 
Note that the zero line varies from experiment to 
experiment according to the baseline trajectory. 

The validity of the assumption used for Eq. (5) 
(do-/d Y < l /k)  is verified. At low sample concen- 
trations, the baseline noise takes predominance 
over the injection error and the response SD, a M, 
is independent of the signal intensity, E[Y]. There- 
fore, daM/d Y ~ 0. At high sample concentrations, 
the injection error is the major cause of the instru- 
mental error. Therefore, daM/dY~ I (note that 
aM ~ IE[Y]). The injection error, L was observed 
to be 0.0024 in the LC apparatus [6] and is much 
lower than 1/k where k = 1.6. 

2.3. Discrimination limit and relative 
discrimination limit 

Substituting Eq. (6) for Eq. (3), we can obtain 
the discrimination limit for the LC and CE analy- 
sis: 

dam 
A Y = ~/2ka M + k2aM d---Y- (7) 

The relative discrimination limit is defined as: 

A Y /2k aM + k  2 aM dam 
E[ Y] - "/ E[ Y] E [ ~  d Y (8) 

where aM/E[Y] is the R.S.D. of measurements. If 
necessary, another uncertainty equation can re- 
place a M of Eqs. (7) and (8). 

2.4. Probabilistic aspects o f  discrimination limit 

Fig. 3 shows typical examples of the homo- and 
hetero-scedasticity. The former mimics, though 
roughly, LC, CE and fluorometry [6,10,20]. The 
discrimination limit depends entirely on the 
scedasticity. 

For the homoscedastic situation, the discrimi- 
nation limit, AY, is constant irrespective of the 
reference concentration or E[Y] (see Fig. 4(A)). 
The positive derivative of the response S.D. in the 
heteroscedastic situation makes the curve of the 
discrimination limit steeper than the original re- 
sponse S.D. That is, the change in the discrimina- 
tion limit is larger than the change in the response 
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Fig.  2. Power spectral density of each baseline (512 data points) and average power spectral density. The noise parameters of the 
average power spectra are: ~, = 10.7; rh = 5.4; p = 0.99. 

S.D. We should note that ELY], AY and ~ have 
the same dimension. 

Fig. 4(B) demonstrates that the relative discrim- 
ination limit, A Y/E[Y], decreases with increasing 
measured quantity, whereas the discrimination 
limit, A Y, is non-decreasing. These behaviors bear 
a close resemblance to those o f  S.D. and R.S.D. 

of  measurements and the above statement is also 
true, if the discrimination limit and relative dis- 
crimination limit are replaced by S.D. and R.S.D.,  
respectively [1,28]. For the homoscedastic  situa- 
tion of  Fig. 4, when A Y/E[ Y] = 0.06 at the refer- 
ence signal of  400, the sample signal ( =  424) 
which is 1.06 times the reference signal can be 
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discriminated from the reference signal with 95% 
probability. However, when a smaller signal is 
used as a reference, the precision of the test is 
reduced (AY/E[Y]=0.23 at E[Y]= 100). Now, 
the discrimination limit requires the signal 1.23 
times the reference signal. If the probability for 
the right answer is reduced from 95 to 90% (or the 
k value is reduced), the lines of the discrimination 
limit and relative discrimination limit in Fig. 4 
move downward and closer signals can be dis- 
criminated, but with low reliability. 

Fig. 5(A), (B), (D) and (E) show the signals of 
reference (left) and signals for the discrimination 
limit (right) which are overlaid on the actual LC 
baseline (C). The Gaussian signals of 10% differ- 
ence (A) can be discriminated with 95% reliability 
in the LC system. However, for the small refer- 
ence signal (D), the signals of 50% difference are 
the minimum difference for the successful discrim- 
ination. The signals of Fig. 5 are not much larger 
than the baseline noise and the measurement un- 
certainty of the LC system is assumed to be 
homoscedastic (I = 0). 

The signal processing affects the precision of 
measurements greatly [29]. In our LC system, the 
peak height measurement has been proved to be 
superior to the entire area integration [8]. Fig. 
5(A) and (D) are based on the entire area integra- 
tion. For the peak height measurement ((B) and 
(E)), smaller peaks can be used as standard with 
95% probability of discrimination than the entire 
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integration: ((A) and (B)) for 10% difference in 
signal; ((D) and (E)) 50% difference. 

The Monte Carlo simulation is carried out to 
verify the prediction theory as follows. A peak 
pair of the reference and theoretical discrimina- 
tion limit is overlaid on the LC baselines at 
random with no correlation of the measurements. 
The areas (or heights) for the reference and limit 
peaks are measured on the computer and com- 
pared. The answer of this computer experiment 
should be right or wrong. The above experiment 
with the same peak shape is repeated 5000 times 
on 20 baselines. The observed probability for the 
right answer was 94.3% for Fig. 5(A) and 94.8% 
for Fig. 5(B). These values are close to the theo- 
retical value ( =  95%). 

The entire theory of this paper is based on the 
assumption that the integration results or peak 
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Fig. 5. Examples of discrimination limits in LC. (A), (B), (D), (E): the left peak is assumed to come from the reference material; the 
right peak corresponds to the signal of the discrimination limit. All the peaks are Gaussian with the width (S.D.), s, of 15 data 
points. (C): the baseline observed in the LC apparatus [6]. The average measurement of the right peak is 1.1 times ((A) and (B)) or 
1.5 times ((D) and (E)) that of the reference peak (left) with the discriminability of 95%. (A) and (D): the average measurement is 
the peak area over _+ 3 s around the peak center. (B) and (E): the average measurement is the peak height at the peak center. Eq. 
(6) and the noise parameters determined in Fig. 2 are used to predict the LC uncertainty, aM (1 = 0). 

height measurements have a Gaussian distribu- 
tion. This assumption often appears in textbooks 
of analytical chemistry and in many cases, is 
interpretable in terms of the central limit theorem 
[26]. Fig. 6 provides a good evidence for the 
Gaussian assumption of the integrated areas in 
LC (a) and CE (b). Instead of the integration 
results, the distribution of the individual baseline 
intensities was recently examined in gas chro- 
matography [30]. 

The central limit theorem means that the sum 
of random variables displays a Gaussian distribu- 

tion, if the random variables are mutually inde- 
pendent [31]. Here, the random variable 
represents the observed values at a data point of 
the baseline and the sum of the variables corre- 
sponds to the integration over the consecutive 
data points. Since the random variables to be 
summed are correlated in the instrumental analy- 
ses [6,32-36], we have to stress the fact that the 
central limit theorem cannot apply to the results 
of Fig. 6. 

If the random variables (baseline noise) are 
independent and Gaussian with mean 0 and S.D. 
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if/, called white noise, the variance of the fre- 
quency of  occurrence in Fig. 6 should obey the 
following equation (see Appendix): 

Var(X) = (1 +~ . ) i f /2  (9) 

where X means the sum of f intensities divided 
by f Although Eq. (9) decreases with increasing 
f, Fig. 6 shows the disparate behaviors. For LC 
(Fig. 6(a)), the S.D. of the integration results 
first decreases ( f =  1 - 5 )  and then increases 
( f > 5 ) .  This apparent anomaly can be at- 

tributed to the auto-correlation of the baseline 
noise. The baseline noise of the CE apparatus is 
mainly made up of the white noise and the 
statistics of the integration is different from the 
LC statistics. In any case, the uncertainty theory 
(Eq. (6)) can follow the stochastic behaviors of  
the LC and CE baselines (see the solid lines of 
Fig. 6). To recapitulate, the distribution of the 
integration over the LC and CE baselines seems 
to be Gaussian as an experimental evidence, 
but it cannot be explained by the central limit 
theorem. 
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Fig. 6. Distributions of integrated areas over the baselines of LC (a) and CE (b) f denotes the number of data point integrated (if 
f=  1, the peak height measurement is carried out). The discrete frequency of occurrence comes from the integration over the real 
baselines (the Monte Carlo experiment uses the real baselines but without any signals; the number of repetition is 5000). The smooth 
lines are drawn according to Eq. (6): (a) ~' = 10.7; rh = 5.4; p = 0.99, 1 = 0; (b) fi" = 27.8; rFl = 0.4; p = 0.999, I =  0. The wavelength 
is 254 nm for LC and 220 nm for CE. The integration starts with the data point adjacent to the zero point (no lag time). The sixth 
term of Eq. (6) is omitted for the LC. The detailed experimental conditions of LC and CE were described previously [6,20]. 

3. Discussion 

The  va lues  o f  the  d i s c r i m i n a t i o n  l imit  deter-  

m i n e d  in this  pape r  can  app ly  o n l y  to the ana ly t i -  

cal sys tem o f  o u r  l abo ra to ry .  In  general ,  ana lys t s  

shou ld  k n o w  the s tochast ic  p roper t i es  o f  their  

o w n  a p p a r a t u s  for  this p u r p o s e  as follows: 

1. F o u r i e r - t r a n s f o r m  a base l ine  (e.g. 2048 d a t a  

po in ts )  o f  a n  i n s t r u m e n t  to o b t a i n  the  p o wer  

spec t rum;  

2. l eas t - squares  fit the  base l ine  m o d e l  (Eq.  (A8) o f  
[6]) to the power  spec t rum to acqu i re  the 
pa ramete r s ,  ~', rh a n d  p ;  

3. de t e rm ine  the i n t eg ra t i on  m o d e  (k c a n d  kO; 
4. de t e rm ine  the in jec t ion  e r ro r  o f  the  system, L if  

necessary;  
5. observe  the  s ignal  in tens i ty ,  E[  Y], for  the  refer- 

ence;  
6. ca lcu la te  the  S.D. o f  the false areas  wi th  Eq.  

(6) over  a sufficiently wide  reg ion  a r o u n d  the  
reference in tens i ty ;  
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7. use Eq. (7) (8) to calculate the discrimination 
limit or relative discrimination limit (the 
derivative of the response uncertainty, da/dY, 
can also be given numerically). 

The signal taken here is so small that the 
stochastic properties of the LC and CE systems 
are considered homoscedastic with neglecting the 
injection error, I. The practical examples of this 
paper reaffirm the reliability of the uncertainty 
prediction (Eq. (6)), rather than it focus only on 
the wide applicability of the prediction theory of 
the discrimination (Eq, (8)). Nevertheless, the het- 
eroscedastic situations are common in analytical 
chemistry [11,15,17,18,21,22,25,37 40] and can- 
not be neglected in many situations. Consider the 
situation where the risk for the wrong decision is 
set at a low value (e.g. 0.13% and k = 3) and the 
independent error (R.S.D.) produced during the 
sample preparation and measurement is relatively 
high (e.g. daM/dY= 10% R.S.D.). Eq. (7) can 
take the form: A Y = x/2kaM[1 + k/v/2(daM/d Y)]. 
Therefore, the derivative term of the above equa- 
tion greatly affects the discrimination limit: A Y = 
x/2kaM(1 + 0.21) where 0.21 ~-3/1.414 x 0.1. 

As mentioned above, the prediction error of the 
discrimination is as small as 1%. In the probabil- 
ity-theoretic approach of this paper, therefore, 
the heteroscedasticity, dO'M/dY , about 0.01 or 
more, will be rather significant in determining the 
discrimination limit. Many CE apparatus will 
show appreciable scedasticity because of the large 
injection error as compared with modern LC sys- 
tems (e.g. dO-M/d Y~ I ~  0.02 for CE). The actual 
treatment of the heteroscedasticity will be our 
next subject. 

The prediction of the measurement uncertainty 
is also useful for another critical problems in 
analytical chemistry. The detection limit can be 
defined as the lowest amount of analyte which 
yields negative measurements with a negligibly 
small probability [28]. The starting equation of 
this problem is that k { a + ( d a / d Y ) A Y } = A Y .  
The detection limit, A K takes the form: 

kG 
A Y -  d~ (10) 

1 -  k - -  
dY 

If d a / d Y =  0, Eq. (10) becomes the well-known 
equation for the limit of detection [21,25,26]. 

Consider the situation where a legitimate drug 
meets the requirement of contamination. The cor- 
responding equation for the discrimination limit 
represents the highest amount of contaminant 
that passes the purity test with a probability or 
the risk for the test to mistake the drug as illicit 
(for the corresponding equation, see Appendix). 
This situation can also be treated in a similar way. 
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Appendix A 

Discrimination limit 
Eq. (1) can be written as: 

{,- k, d y /I ) -d-Y d Y -  2a2k: = O 

(A1) 

The solution of this equation is: 

[ AY= k2a dY 

+ /k40"2 (drY) 2 { l - k  2 d°- 2 

k, dYJ  J (A2) 

We can easily obtain Eq. (2) from Eq. (A2). If A Y 
is positive and if d a m  Y = 0, the sign of the square 
root term in the numerator of Eq. (2) should be 
positive. If A Y is negative and if da /d  Y = 0, the 
sign should be negative. 

Integration 
Let Wi be the white noise at data point i. The 

average of the integrated white noise, X, with the 
white noise, Wo, at the zero point as a standard is 
written as: 

x = w ,  + • • • + w , . - J w , ,  
f (A3) 



708 Y. Hayashi, R. Matsuda /J ,  Pharm. Biorned. Anal. 15 (1997)697-708 

where f denotes the number of integrated data 
points. The variance of the integration results 
takes the form: 

1 ~ 2  
Var(X) =~5 (W, + - • • + I ~  + f 2 ~ )  (A4) 

If the S.D. of the white noise is constant, W, we 
can obtain Eq. (9). 
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